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ABSTRACT 

A finite element method based on the Eulerian velocity correction method has been used to analyse the 
laminar natural convection in an annular cavity. Unsteady, incompressible, axisymmetric Navier-Stokes 
equations have been made use of. Different radius ratios of the annular cavity have been considered to 
investigate the effect of the radius of curvature on the heat transfer coefficient. 
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NOMENCLATURE 

D 
Gr 

Lref 
Nu 
Numax 
Pe 
Pr 
Ra 
Re 

height of the annular cavity 
Grashof number based on the width 

reference length (r0—r i) 
average Nusselt number 
maximum Nusselt number 
Peclet number = Re·Pr 
Prandtl number 
Rayleigh number= Gr·Pr 
Reynolds number based on Uref and 
Lref 

ri 

r0 
Ti 

T0 

U1 
U2 

inner radius of the annular cavity 
outer radius of the annular cavity 
inner wall temperature 
outer wall temperature 
vertical component of velocity 
radial component of velocity 

Greek notations 
β 
λ 
δi,j 

v 

thermal expansion coefficient 
radius ratio (r i/ro) 
Kronecker delta (equal to 0 if i≠j 
and 1 if i=j) 
kinematic viscosity 

INTRODUCTION 

The determination of buoyancy-driven flows in an enclosed cavity has many applications of 
which the most widely known is that of double glazing1. The natural convection heat transfer 
in an annular cavity also falls in this category. It finds applications in areas like nuclear reactors, 
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where there would be an annular gap between the core and the surrounding pressure vessel. 
Another example is the apparatus commonly used for measuring the thermal conductivity of a 
fluid in which an electrically heated wire is mounted on the axis of a cylinder. 

The experimental results on annular cavities are very few and are applicable for only a limited 
and specified values of aspect ratio (A) and radius ratio (1/λ), for example Nagendra et al.2. 
The effect of radius ratio and aspect ratio on natural convection heat transfer in an annular 
cavity in which a constant heat flux is maintained at the inner wall has been investigated by 
Keyhani et al.3, Bhushan et al.4, Khan et al.5 and Fang and Paraschivoiu6. But the literature 
is limited for the case of an annular cavity with constant wall temperatures (wall heated by 
condensation process). One of the earlier works of this nature is that of de Vahl Davis and 
Thomas7. They presented numerical results for laminar axisymmetric natural convection in a 
vertical annulus with aspect ratios 5 to 20 and radius ratios (r0/ri) 1 to 4. They found that the 
mean heat transfer coefficient at the inner wall was found to decrease with an increase in aspect 
ratio and increase with an increase of radius ratio. Wu-Shung Fu et al.8 conducted a study of 
the transient natural convection in an annular cavity for a single radius ratio. They adopted the 
numerical method of SIMPLE-R with power law scheme. They came out with a very useful 
observation that the phenomenon of the position of the maximum stream function moving from 
near the inner wall region to near the outer wall region is different from that in a square enclosure. 
Also it was observed that the low temperature region is much larger than that in the square 
cavity. Le Quere and Pecheux9 reported that tall annular flows are unstable with respect to non 
axisymmetric disturbances for larger values of radius ratio. Farouk et al.10 used the stream 
function-vorticity form of the Navier-Stokes equations for a similar study. They considered 
aspect ratios up to 5 and did not take any radius ratio beyond 3 in view of the findings of 
Reference 9. In addition to finding out that the heat transfer is maximum when the aspect ratio 
is 1, Farouk et al.10 also concluded that the effectiveness of transport of heat by natural convection 
is diminished continuously as the ratio (1/λ) is increased for a particular aspect ratio. 
This is apparently in contradiction with the results of de Vahl Davis and Thomas7. Farouk et 
al. attribute the discrepancy to the difference in the choice of the parameters used to present 
the heat transfer results. While de Vahl Davis and Thomas used the Nusselt numbers, Farouk 
et al. have used the expression for the equivalent thermal conductivity. More recently Woon-shing 
Yeung11 carried out a semi-analytical analysis for the free convection in a closed vertical annulus 
with isothermal walls and insulated top and bottom surfaces using the conduction layer 
approximate method (CLAM). This method is based on the premise that individual thin boundary 
layers develop along the vertical walls in the so-called boundary layer regime, and as such the 
applicability of this method is restricted to higher Rayleigh number range only. Thus there is a 
general lack of literature on the effect of radius ratio on the distribution of Nusselt number over 
the hot and cold walls. 

In the present study, the finite element method based on Euler's velocity correction method 
has been used to find the effect of radius ratio on the heat transfer characteristics of an annular 
cavity of aspect ratio 1. The two vertical walls are maintained at different temperatures and the 
horizontal walls are kept insulated. A fluid of Prandtl number 0.71 has been considered in the 
Rayleigh number range of 109 to 106 which falls in the laminar regime. The temperature and 
velocity fields and the Nusselt number variation along both hot and cold walls have been 
investigated for different Rayleigh numbers in the above range. 

GOVERNING EQUATIONS 

The non-dimensionalized axisymmetric laminar equations for the case of natural convection are 
given below in indicial notation. 
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Continuity equation: 

Momentum equation: 

Energy equation: 

All the velocities are non-dimensionalized with a reference velocity Uref. Most of the authors 
follow a method of non-dimensionalization which gives rise to a Ra. Pr term in the momentum 
equation in the direction of the gravity field. In the present work Gr/Re2 term appears in the 
momentum equation. In order to obtain a direct comparison between the two methods, it is 
necessary that Uref be chosen in such a way as to give an Re = 1/Pr. All lengths have been 
non-dimensionalized with the difference of the inner and outer radii (ro—ri). Time is 
non-dimensionalized using the ratio (Lref/Uref) and temperature with ∆Tref (temperature 
difference between the hot and cold walls). Re, Gr and Pe are the Reynolds number, Grashof 
number and Peclet number respectively and are given by: 

This type of non-dimensionalization which gives rise to the term Gr/Re2 has got an advantage 
in that, (1), (2), (3) can also be used to solve a mixed convection problem wherein both the 
forced and free convection are equally dominant. 

EULERIAN VELOCITY CORRECTION METHOD 

In this method the solution is advanced in three steps at each time step. These three steps are 
calculation of pseudo velocities, evaluation of pressure from the Poisson equation and correction 
of pseudo velocities to obtain velocities at the next time step. 

Calculation of pseudo velocities 

The pseudo or fictitious velocities are calculated from (2) by dropping the pressure terms: 

Using the Euler's explicit scheme to expand the l.h.s. of the above equation in the time domain: 
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Equation (7) can now be written as: 

The above equation is used to calculate the pseudo velocities. 

Pressure equation 
From (2) and (9) we obtain: 

Expanding both the time derivatives explicitly and simplifying we get: 

Taking the partial derivatives of (11) with respect to Xi and modifying, we arrive at the following 
pressure Poisson equation: 

Velocity correction 
The original velocities of the next time step Un+1i 

are obtained by correcting the pseudo 
velocities using the pressure evaluated as shown below: 

Finally, the temperature is calculated using an explicit form of (3): 

The various steps in the solution procedure can be summarized as follows: 
(i) start with initial conditions of Un, Vn and Tn 

(ii) find the fictitious velocities Vn+1 using (9) 
(iii) find pressure ρn+1 using (12) 
(iv) find the corrected velocity Un+l using (13) 
(v) find Tn+1 using (14). If transient results are required, then it is necessary to iterate at 

each time step to get the corrected temperature at that time step. Otherwise repeat the 
steps (ii) to (v) till the steady state values are obtained. 

FINITE ELEMENT FORMULATION 

Finite element method based on Galerkin's weighted residual technique has been used to solve 
the above equations. Linear triangular elements have been used to discretize the solution domain. 
Various steps involved in the finite element formulation are explained in Reference 12. 

The finite element equation for the calculation of fictitious velocities is obtained as: 
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where 

and 

The finite element equation for the pressure Poisson equation is given by: 

where 

The finite element equation for the velocity correction is obtained as: 

where 

Equations (14), (17) and (20) are the element matrices which are assembled to get the global 
matrices. 

Similarly the Galerkin technique when applied to the unsteady state energy equation gives: 

where 

Here only the Poisson equation for pressure is solved from a set of algebraic equations. In all 
the other steps, mass lumping is done on l.h.s. This simplifies the solution procedure as it results 
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in a diagonal matrix on l.h.s. The inverse of a diagonal matrix is nothing but each element 
replaced by its reciprocal. This enhances the speed of computation. Also the stiffness matrix in 
the pressure Poisson equation need be assembled only once and only the r.h.s. i.e., the load 
vector changes at each time step. All these features offset the disadvantages of the explicit scheme 
and render the algorithm cost effective. 

GEOMETRY AND BOUNDARY CONDITIONS 
Figure 1 shows the geometry of the annular cavity and the boundary conditions. The inner wall 
is maintained at a temperature Ti and the outer wall at a temperature T0, whereas the two 
horizontal walls are kept insulated. No slip condition prevails on all the four boundaries. In all 
the cases air with a Prandtl number 0.71 has been considered as the fluid. The aspect ratio 
[D/(r0 --ri)] has been taken to be 1. 

NUMERICAL RESULTS 

The computations were carried out using a non-uniform mesh of 841 nodes and 1568 elements. 
The domain has been discretized and graded in such a way that we get a very fine mesh near 
the walls of the cavity and a relatively coarse mesh in the core region. Although the algorithm 
is a transient one, only the steady state results have been presented for three different radius 
ratios, namely, λ = 0.999, 0.50 and 0.091 (or 1/λ ≃ 1, 2 and 11). 

Figure 2(a,b,c) and Figure 3(a,b,c) show the variation of the vertical component of velocity 
(U1) and the temperature along horizontal mid-plane of the cavity for λ = 0.999, 0.50 and 0.091 
respectively. Figure 4(a,b,c) show the Nusselt number variation along the hot wall of the cavity 
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for the same cases mentioned above. In all the three Figures, for the case λ = 0.999, the inner 
radius, ri » (r0 — ri) which means that the effect of curvature is almost negligible. The results for 
this case correspond to a plane cavity problem. This is evident from the close agreement between 
the present results and the published results13,14 for a plane cavity as shown in Tables 1 and 
2. Table 1 shows a comparison of the maximum vertical component of velocity as obtained in 
the present investigation with those in References 13 and 14. Table 2 shows a comparison of 
the average Nusselt number along the hot wall of the cavity for different Rayleigh numbers for 
λ = 0.999, with the benchmark solutions of de Vahl Davis13. 

It is observed from Figures 2(b,c) and 3(b,c) that as λ decreases the effect of curvature comes 
into picture. For λ = 0.50 and 0.091 the vertical component of velocity (U1) and the temperature 
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distribution are not symmetric about the mid-plane as was the case in a plane cavity. U1 velocity, 
near the hot wall is much higher than that at the cold wall. Also the temperature gradient is 
much steeper near the hot wall due to less available area for heat transfer than near the cold 
wall. As a result, the boundary layer thickness is smaller near the hot wall. Consequently, the 
Nusselt number is higher than for a plane cavity. Further, from the temperature plots it is 
observed that the effect of curvature is to reduce the overall fluid core temperature. This is 
consistent with the findings of Woon-Shing Yeung11. Figures 5a and 5b show the streamlines 
and isotherms for λ = 0.999 and Figures 6a and 6b show the same for λ = 0.091. The streamlines 
and isotherms for λ = 0.999 are very much same as those for a plane case13,14. For Ra=105 

and 106 two secondary circulation zones appear in the core. This is supported by the presence 
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of a small negative component of velocity just outside the boundary layer along the hot wall 
and a small positive component of velocity outside the cold wall boundary layer in Figure 2. 
The streamlines in the case of λ = 0.091 (Figure 6a) are found to be more densely packed near 
the hot wall. This is also evident from Figure 2c in which the velocity along the hot wall is 
much higher than near the cold wall. Also the isotherms in the case of λ = 0.091 (Figure 6b) are 
displaced towards the hot wall indicating that there is a much steeper temperature gradient near 
the hot wall than near the cold wall, a fact which was borne by Figure 3c. 

Figures 7a and 7b show the comparison of Nusselt number variation along the hot wall for 
Ra = 109 and 106, with λ as a parameter. It is observed that the heat transfer rate along the hot 
wall significantly improves as λ is decreased. This is due to less available area near the hot wall 
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Table 1 Comparison of maximum vertical velocity for different Ra with 
available results 

Rayleigh 
number 

103 

104 

105 

106 

Maximum vertical component of velocity (Uimax) 

de Vahl Davis13 

3.697 
19.620 
68.590 

219.360 

Markatos and 
Pericleus14 

3.593 
19.440 
69.080 

221.800 

Present 
results 

3.65 
19.65 
69.50 

226.00 

Table 2 Comparison of average Nusselt numbers obtained in the 
present investigation with those in Reference 13 

Rayleigh 
number 

103 

104 

105 

106 

Average Nusselt number 

Present 
results 

1.1307 
2.2894 
4.6875 
9.1443 

Benchmark soln 
de Vahl Davis13 

1.116 
2.242 
4.523 
8.928 

% age 
difference 

1.32 
2.11 
3.64 
2.42 

as compared to the cold wall. Figures 8a and 8b show the variation of local Nusselt number 
along the hot and the cold walls for λ = 0.999, 0.500 and 0.091 for Ra= 109 and 106. For λ = 0.999 
the Nusselt number variation is almost symmetric on both the walls and the Nu values are close 
to each other as is evident from Figure 8a (i and ii). But as_λ decreases the Numax along the hot 
and the cold walls differ more and more and hence the Nu values differ significantly. Figures 
9a and 9b show the variation of Nu for Ra = 103 and 106 along the hot and cold walls for 
different radius ratios (λ). It is evident that the Nu increases drastically as the radius ratio 
decreases from 0.999 to 0.091. These results follow the same trend as reported by de Vahl Davis 
and Thomas7. Figure 9 in Reference 7 shows the variation of Nu along the hot wall for different 
aspect ratios ranging from 5 to 20 and for different radius ratios. Since they did not present any 
results for aspect ratio of 1 it is not possible to obtain a comparison of the absolute values of 
Nu values of the present work with theirs. However, a qualitative agreement between the present 
results and those of References 7 and 8 could be observed. 

CONCLUSIONS 

A time and cost effective finite element code has been developed for studying the laminar natural 
convection in axisymmetric geometries and has been used to investigate into the heat transfer 
characteristics of an annular cavity. The code has been validated by considering a plane cavity 
(which is a limiting case of an annular cavity) for which published results are available. For the 
range of Rayleigh numbers and radius ratio investigated, it is observed that in an annular 
enclosure as the radius ratio is decreased (or the effect of radius of curvature is increased), the 
symmetry of the velocity field, temperature field and the Nusselt number distribution is lost. 
From the present investigation it is also found that, for fixed temperatures of the inner and 
outer walls of an annular cavity, the heat transfer coefficient increases as the radius ratio decreases. 
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